Vision industry in urgent need of lens standard

Share this on social media:

Professor Dr Bernd Jähne at HCI, Heidelberg University, and an EMVA board member, argues that an open lens-camera communication standard would greatly benefit the machine vision community

Permanent change and innovation characterises the machine vision industry. The two most prominent examples are machine learning, which is revolutionising the way image data are analysed, and embedded vision systems, which is changing the processing platforms.

Amazingly, there is one component in an image system that has not yet changed since the early days of the machine vision industry: the lens mount. C-mount with a one-inch thread, 32 threads per inch and a flange focal distance of 17.256mm is the most common type of screw lens mount. It is much older than the machine vision industry. Invented in 1926 by Bell and Howell for 16mm film cameras, it has since been used by analogue CCTV cameras before being finally overtaken by digital cameras. For larger image sensors nothing new has been invented. Instead, lens mounts from SLR cameras such as the Nikon F-mount or the screw mount M42 x 1 are commonly used. This is a really surprising fact. In the constantly changing world of machine vision, the lens mount seems to be something rock solid: after it was invented, it was simply used and never changed.

Does this mean that the lens mount works perfectly for machine vision systems? This unfortunately is not the case; 30 years ago it was apparent that the machine vision industry is missing something. In 1987 Canon introduced the Electro-Optical System (EOS) for digital information and power transmission between SLR cameras and lenses, and used it to produce lenses with built-in auto focus motors. Such a standardised system was not available for the machine vision industry, but for some time this deficit did not matter because auto focus systems were quite rare.

Today, however, the situation has changed completely. Take all the possibilities that have already been implemented in commercial system cameras plus modern methods of computational imaging, and combine this with the processing capacities of modern embedded vision systems. Then you get an idea of how powerful and different the next generation of image acquisition systems could be. Some of the set-ups are:

  • Power supply for lenses with motors and other electronic components;
  • Auto focus systems (also including novel systems with liquid lenses) and return of the distance setting;
  • Setting the focal length for zoom lenses and reading back the current focal length;
  • Control and reading the aperture setting;
  • Inquiry of lens properties by the cameras, such as aperture dependent lens shading, geometrical distortion, and lateral chromatic aberration. With this information the camera can automatically correct these distortions;
  • Intelligent image acquisition: automatically setting the aperture and/or the exposure time to capture a given scene with the required depth of field;
  • Automatically capturing a focus series, and computing depth maps and images with extended depth of field;
  • All other kinds of optical systems with extended depth of field. The camera is sent a signal about the type of EDOF implemented in the lens and automatically performs the required processing;
  • Correction or modification of the modulation transfer function (MTF) of the lens or camera system. This may include automatic adaptation of the lens sharpness to the pixel size of the camera;
  • Vibration and motion compensation during image acquisition;
  • All kinds of super resolution camera systems.

Currently there are, at most, a handful of machine vision cameras available that use a standardised camera lens communication system. These include the XiB cameras from Ximea, with a Canon-EF mount, and the Exo tracer camera from SVS-Vistek, with a micro-four-third mount. An open lens camera communication standard would open up many possibilities within the machine vision community. The communication protocol should be the same for small integrated systems containing a lens, sensor and possibly a processing unit for mobile devices, up to large-format sensors. New precise and stable lens mounts would be required for high-accuracy metrology applications, because bayonet mounts show too much play.

A new and open lens camera communication standard would be even more powerful if light sources and camera positioning were included. In this way, systems with automatic or controlled illumination and automatic tracking could also be engineered.

It is really surprising to see that such an essential part of a vision system as an open camera lens communication standard has been overlooked for such a long time by the industry. It is now essential to develop it, in order to make the next generation of vision systems possible. This is why the European Machine Vision Association (EMVA) wants to push such a standard in cooperation with the other G3 associations for the sake of the global machine vision industry and its users.

Related analysis & opinion

SWIR imaging can show bruising in fruit that wouldn't be evident with a visible camera. Credit: Sony

22 July 2020

Edmund Optics’s Thomas Armspach-Young and Boris Lange consider the optics needed to get the best out of Sony's new short-wave infrared image sensors

Neil Trevett and Chris Yates

16 March 2021

The Khronos Group and the EMVA are to explore software standards for embedded vision. Khronos’ Neil Trevett and EMVA’s Chris Yates explain the work

A point cloud of a National Research Council Canada artefact superimposed on a CAD model. Credit: NIST

31 July 2020

How do you choose a 3D vision system for a robot cell? Geraldine Cheok and Kamel Saidi at the National Institute of Standards and Technology in the USA discuss an initiative to define standards for industrial 3D imaging

27 March 2020

Newly elected EMVA president Chris Yates considers what the future might hold for machine vision

Related features and analysis & opinion

Isotronic’s VialChecker multi-camera quality control machine. Credit: Isotronic and IDS

08 June 2021

Greg Blackman explores quality control measures taken to make the glass bottles filled with vaccines

Tropical Storm Frank off the south western coast of Baja California, captured by Ames Research Centre's HDVis camera mounted on Nasa's Global Hawk unmanned research aircraft. Credit: NASA/NOAA

14 December 2020

Theia Technology’s Mark Peterson outlined the benefits of rectilinear lenses at AIA’s vision solutions conference. Greg Blackman reports

Active Silicon’s 4xCXP-12 FireBird Coaxpress frame grabber (PCIe Gen3 x8)

01 April 2021

Chris Beynon, Active Silicon’s CTO and technical chair of the Coaxpress committee, updates on the Coaxpress standard

Neil Trevett and Chris Yates

16 March 2021

The Khronos Group and the EMVA are to explore software standards for embedded vision. Khronos’ Neil Trevett and EMVA’s Chris Yates explain the work

26 October 2020

Prof Dr Bernd Jähne, chair of EMVA 1288 and senior professor at HCI, Heidelberg University, gives a preview of release 4.0 of the EMVA standard 1288