Thanks for visiting Imaging and Machine Vision Europe.

You're trying to access an editorial feature that is only available to logged in, registered users of Imaging and Machine Vision Europe. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Microscopy imaging technique achieves sub-nanometre resolution

Share this on social media:

A research team comprised of Alexandro Pertsinidis, Yunxiang Zhang and Steven Chu, a Nobel laureate and US Energy Secretary, has developed an optical microscopy technique for making nanometre-scale measurements.

The researchers used two back-illuminated Andor EMCCD cameras: the iXon+ 860, capable of acquiring images at 500fps, and the highly sensitive iXon+ 897 model, which can capture individual photons from single fluorescence emitters.

By developing an active feedback system, the team were able to repeatedly place the centroid of a single fluorescent molecule image anywhere on either of the camera's CCD arrays and measure its position with sub-pixel accuracy. This means, that in conjunction with additional optical beams to stabilise the microscopy system, the traditional errors caused by non-uniformity of chip manufacture can be reduced to sub-nanometre scale.

As a result, the team were able to develop a two colour, single molecule imaging system, which achieved image resolutions with an order of magnitude greater than the current best super resolution techniques (5nm).

Gaining the ability to resolve single molecules at this level has significant implications for biological research, where it should allow the structure of large, multi-subunit complexes to be analysed at the single molecule level.

Chu and his colleagues are planning to harness the new technique to learn more about the human RNA polymerase II system, which initiates the transcription of DNA, and the molecular mechanisms controlling cell-to-cell adhesion processes.

The resolving power of this super resolution technique may also be of use in guiding the design of new photometric imaging systems in scientific fields such as nanometrology, atomic physics and astronomy.

Recent News

26 September 2019

Rugby fans are now able to watch highlights from the Rugby World Cup, currently taking place in Japan, from angles and viewpoints not possible with conventional cameras, thanks to a multi-camera system from Canon

13 September 2019

A hyperspectral imaging system built by US research centre Battelle, using Headwall sensors, has been chosen as a finalist for the Department of Homeland Security’s Opioid Detection Challenge

23 July 2019

On the 50th anniversary of the Moon landing on 20 July 1969, Zeiss has described how, in less than nine months, it built the camera lens used to capture the iconic images during the Apollo 11 mission

18 July 2019

Researchers at Lund University in Sweden are using high-speed cameras to study how insects use visual information to control flight