Thanks for visiting Imaging and Machine Vision Europe.

You're trying to access an editorial feature that is only available to logged in, registered users of Imaging and Machine Vision Europe. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Imaging spectrograph to probe galaxy formation on ESO's Very Large Telescope

Share this on social media:

An instrument that combines high resolution imaging with spectroscopy has been installed on the European Southern Observatory’s Very Large Telescope (VLT) at the Paranal Observatory in northern Chile. The device observed distant galaxies, bright stars and other test targets during the first period of observations, the results of which will be presented at the forthcoming 3D2014 workshop in March at ESO in Germany.

The instrument, called Multi Unit Spectroscopic Explorer (MUSE), is mounted on Unit Telescope 4 of the VLT, which is currently being converted into a fully adaptive telescope. The VLT Survey Telescope is the largest telescope designed to survey the skies in visible light. MUSE uses 24 spectrographs to separate light into its component colours to create both 3D images and spectra of selected regions of the sky; coupling the discovery potential of an imaging device with the measuring capabilities of a spectrograph. Astronomers are able to move through the data and study different views of the object at different wavelengths.

The new instrument is the result of ten years of design and development by the MUSE consortium — headed by the Astrophysics Research Center of Lyon, France and partner institutes Leibniz Institute for Astrophysics Potsdam (Germany), Institute for Astrophysics Göttingen (Germany), Institute for Astronomy ETH Zurich (Switzerland), The Research Institute of Astrophysics and Planetary Science (France), Dutch Research School for Astronomy (The Netherlands) and ESO.

The leader of the team and principal investigator for the instrument, Roland Bacon from the Astrophysics Research Center of Lyon, commented: ‘It seems strange that this seven-tonne collection of optics, mechanics and electronics is now a fantastic time machine for probing the early Universe. We are very proud of the achievement — MUSE will remain a unique instrument for years to come.’

MUSE’s science goals include delving into the early epochs of the Universe to probe the mechanisms of galaxy formation and studying both the motions of material in nearby galaxies and their chemical properties. It will have many other applications, ranging from studies of the planets and satellites in the Solar System, through the properties of star-forming regions in the Milky Way and out to the distant Universe.

Recent News

24 October 2019

Imec says the new production method promises an order of magnitude gain in fabrication throughput and cost compared to processing conventional infrared imagers

04 October 2019

Each pixel in Prophesee’s Metavision sensor only activates if it detects a change in the scene – an event – which means low power, latency and data processing requirements

18 September 2019

3D sensing company, Outsight, has introduced a 3D semantic camera that combines lidar ranging with hyperspectral material analysis. The camera was introduced at the Autosens conference in Brussels

16 September 2019

OmniVision Technologies will be showing an automotive camera module at the AutoSens conference in Brussels from 17 to 19 September, built using OmniVision’s OX03A1Y image sensor with an Arm Mali-C71 image signal processor