Thanks for visiting Imaging and Machine Vision Europe.

You're trying to access an editorial feature that is only available to logged in, registered users of Imaging and Machine Vision Europe. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Imaging planted in photosynthesis research

Share this on social media:

Heinz Walz of Effeltrich, Germany has developed a fluorometer using machine vision cameras that can determine the intensity of photosynthesis in plants quickly and accurately.

The device aims to answers questions of how plants react to climate change, disease, and to discern the best ways to achieve environmental stability. The amount of photosynthesis can be used as an indicator of the plants physiological condition.

By measuring the fluorescent energy loss during the process of photosynthesis from the chlorophyll, the photosynthetic activity can be measured in a non-destructive and more accurate way. Previous techniques measured the amount of chlorophyll – the part of the leaf cell that performs the photosynthesis – within the leaf; however this can be misrepresentative of the photosynthetic activity of the leaf.

Oliver Meyerhoff, a scientist with Walz, explained: ‘Fluorescence yield varies from location to location, which allows for conclusions about photosynthetic efficiency and with it the vitality of the sample being measured.’ This means the fluorometer is applicable to a range of research disciplines – from the basic physiology of higher and lower plants, coral research, or marine ecophysiology.

The system consists of a measuring head with integrated special lighting and a digital camera from Allied Vision Technologies. Samples of different sizes can be installed in the measuring head, depending upon the model. Here, samples are protected from outside light and are illuminated with precise light pulses. Blue or red high-power LEDs whose spectra have been calibrated to the absorption characteristics of chlorophyll function as the light source.

The fluorescence levels are measured using a camera from Allied Vision Technologies. The plant samples are stimulated with both minimal intensity light that cannot trigger photosynthesis and strong light pulses, up to ten times the intensity of sunlight. In this manner, the number of active centres in the sample can be determined. ‘Following these two first steps, we know how the plant behaves in darkness and in maximum light,’ Meyerhoff explained. ‘After this calibration, we can combine measurements with different illuminations and interpret the values.’

The images captured by the camera are then displayed and analysed by the ImagingWin Software from Walz. The values are graphically represented using a colour scale in an image. Eighteen different parameters can be played back in different colour palettes.

Recent News

24 October 2019

Imec says the new production method promises an order of magnitude gain in fabrication throughput and cost compared to processing conventional infrared imagers

04 October 2019

Each pixel in Prophesee’s Metavision sensor only activates if it detects a change in the scene – an event – which means low power, latency and data processing requirements

18 September 2019

3D sensing company, Outsight, has introduced a 3D semantic camera that combines lidar ranging with hyperspectral material analysis. The camera was introduced at the Autosens conference in Brussels

16 September 2019

OmniVision Technologies will be showing an automotive camera module at the AutoSens conference in Brussels from 17 to 19 September, built using OmniVision’s OX03A1Y image sensor with an Arm Mali-C71 image signal processor