Deep learning assists technicians analyse medical images

Share this on social media:

A trial using deep learning algorithms has shown that artificial intelligence has the potential to assist technicians and detect human errors in medical image handling.

System-on-chip manufacturer Socionext and Japanese AI software company Soinn presented results from the project at Medtec Japan, held in Tokyo from 19-21 April.

In the trial, Socionext extracted and delivered biometric data to Soinn’s Artificial Brain. Soinn learned to read subcutaneous fat thickness from abdominal ultrasound images. The estimations by Soinn were then compared with the reading results by ultrasound technicians.

Soinn’s Artificial Brain can accurately read fat tissue thickness from 80 per cent of the data within 5 per cent margin of error. There were noticeable differences between the readings by human and by Soinn for some of the images.

After reviewing these data, it was confirmed that human error, including numerical input, was a common occurrence from data reading by human. Based on the findings, the companies believe that AI has the potential to be used for assisting technicians in reading images and detecting human errors in medical image handling.

Machine deep leaning, which is attracting attention from fields including medical imaging to driverless cars, is thought to require hundreds of thousands of images in order to learn from reading the images. In contrast, Soinn needed only about 700 images.

Company: 

Related news

Recent News

03 September 2020

Terahertz imaging company, Tihive, has been awarded €8.6m from the European Innovation Council's Accelerator programme to scale up its industrial inspection technology

19 May 2020

The National Institute of Standards and Technology and ASTM Committee E57 have released proceedings on a workshop to define the performance of 3D imaging systems for robots in manufacturing

12 May 2020

The sensors boast a pixel pitch of 5μm thanks to Sony's stacking technology using a copper-to-copper connection. They also deliver high quantum efficiency even in the visible range

06 April 2020

Zensors' algorithms analyse feeds from CCTV cameras to provide real-time data on the number of people in an area and whether safe distances are maintained between them