Holographic imaging guides cardiac doctors in minimally invasive procedures

Share this on social media:

Tags: 

Cardiac doctors have trialled a 3D holographic imaging system as an aid in minimally invasive heart procedures. Jessica Rowbury speaks to Dr Elchanan Bruckheimer, a paediatric cardiologist who presented the results of the trial at a recent cardiovascular symposium

Doctors working in collaboration with the Schneider Children’s Medical Center in Petach Tikva, Israel have completed a clinical trial showing how 3D holographic images can be used to guide minimally invasive heart procedures. The results of the study were presented on 29 October at the Transcatheter Cardiovascular Therapeutics (TCT) scientific symposium in San Francisco.

The holographic imaging system was developed by Royal Philips, the healthcare arm of Philips, and holographic display company, RealView Imaging. It is hoped that the technology will be available for use in clinical catheter laboratories in the next two years, according to Dr Elchanan Bruckheimer, paediatric cardiologist and director of the Cardiac Catheterization Laboratories at Schneider Children’s Medical Center, who presented the results at the symposium.

Eight patients were involved in the trial, which used RealView’s visualisation technology to display interactive, real-time 3D holographic images acquired by Philips’ X-ray and cardiac ultrasound systems. Doctors in the team were able to view detailed dynamic 3D holographic images of the heart 'floating in free space' during a minimally-invasive structural heart disease procedure.

‘The study was carried out to demonstrate the technical feasibility of producing holograms for the first time in a catheter laboratory setting, in a way that would be useful to the doctor by allowing them to interact with the hologram,' explained Dr Bruckheimer.

After successful results from the pilot study, this technology is not far from becoming available in a clinical setting, as Dr Bruckheimer explained: ‘Hopefully within the next two years we will be able to present a commercial working device that can be put into any major catheter lab and be put to use.'

During minimally invasive heart procedures, doctors use x-ray imaging, which provides visualisation of catheters and heart implants, and ultrasound imaging, providing detailed insights into the heart’s soft tissue anatomy. Typically, doctors will look at a 60-inch high definition screen during the procedure to see 3D images on a 2D screen.

Steve Klink, director of communications and senior press officer at Philips Group Communications, said: ‘The idea was to combine our ultrasound and x-ray scanners and, instead of just presenting the data on a standard 2D screen, to also present that data as a hologram. The 3D hologram technology is capable of translating the 3D datasets from our scanners into a real life hologram of the patient’s heart.’

Doctors were able to manipulate the projected 3D heart structures by touching the holographic volumes in front of them.

‘The holographic projections enabled me to understand and interrogate the 3D spatial anatomy of the patient’s heart, as well as to navigate and appreciate the device-tissue interaction during the procedure,’ said Dr Einat Birk, paediatric cardiologist and Director of the Institute of Pediatric Cardiology at Schneider Children’s Medical Center.

Dr Bruckheimer added: ‘The ability to reach into the image and apply markings on the soft tissue anatomy in the x-ray and 3D ultrasound images would be extremely useful for guidance of these complex procedures.’

Klink explained: ‘Potentially, with this new technology, the doctor can have all the benefits of open heart surgery, in that he can touch the heart, see the features of the heart, and manipulate it, but it will be a minimally invasive procedure that will have less impact on the patient.’

Image-guided therapies for heart diseases have greatly increased the need for live 3D image guidance, to supplement today’s live 2D image guidance. ‘Medicine is moving so that procedures such as micro valve repair, valve replacements and complex electrophysiological procedures such as catheter ablation therapy for heart arrhythmias are carried out in the catheter lab,’ said Dr Bruckheimer.

According to Klink, an important trend in healthcare is the transition from surgical procedures to more minimally-invasive procedures. ‘We think that technologies like this could potentially drive the trend from surgery to minimally invasive procedures to allow for faster patient recovery, shorter hospital stays, and fewer complications,’ he said.

Company: 

Related analysis & opinion

05 May 2020

Greg Blackman speaks to Kieran Edge at the University of Sheffield's Advanced Manufacturing Research Centre, about new vision projects and the presentation he is to give for UKIVA's vision technology hub, to be broadcast on 14 May

A point cloud of a National Research Council Canada artefact superimposed on a CAD model. Credit: NIST

31 July 2020

How do you choose a 3D vision system for a robot cell? Geraldine Cheok and Kamel Saidi at the National Institute of Standards and Technology in the USA discuss an initiative to define standards for industrial 3D imaging

28 February 2020

Paul Wilson, managing director of Scorpion Vision, describes what it takes to install a 3D robot vision system in a Chinese foundry

Depth map from the SceneScan. Credit: Nerian Vision

21 November 2019

Dr Konstantin Schauwecker, CEO of Nerian Vision, describes the firm’s stereo vision sensor for fast depth perception with FPGAs

Related features and analysis & opinion

Two robots have been installed at Aalborg University Hospital in Denmark. Credit: Kuka

04 June 2020

Keely Portway looks at how robots are automating procedures in hospital testing laboratories, and how imaging underpins this

05 May 2020

Greg Blackman speaks to Kieran Edge at the University of Sheffield's Advanced Manufacturing Research Centre, about new vision projects and the presentation he is to give for UKIVA's vision technology hub, to be broadcast on 14 May

19 December 2019

Keely Portway finds out how vision technology is playing a role in medical diagnosis

Engineers at KYB in front of a pick-and-place solution for handling steel metal cylinders. Credit: Pickit

03 August 2020

Car manufacturing has been hit hard by Covid-19, but the need for automation on production lines has not diminished, as Greg Blackman finds out

A point cloud of a National Research Council Canada artefact superimposed on a CAD model. Credit: NIST

31 July 2020

How do you choose a 3D vision system for a robot cell? Geraldine Cheok and Kamel Saidi at the National Institute of Standards and Technology in the USA discuss an initiative to define standards for industrial 3D imaging

04 June 2020

How will the world feed 10 billion people by 2050 with no new land for agriculture? Greg Blackman speaks to machine builder Bühler about how optical sensing can maximise yield in grain processing

Two robots have been installed at Aalborg University Hospital in Denmark. Credit: Kuka

04 June 2020

Keely Portway looks at how robots are automating procedures in hospital testing laboratories, and how imaging underpins this

28 February 2020

Paul Wilson, managing director of Scorpion Vision, describes what it takes to install a 3D robot vision system in a Chinese foundry