Thanks for visiting Imaging and Machine Vision Europe.

You're trying to access an editorial feature that is only available to logged in, registered users of Imaging and Machine Vision Europe. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Computer vision helps diagnose genetic disorders in children

Share this on social media:

Computer analysis of photographs could help doctors diagnose which condition a child with a rare genetic disorder has, researchers from Oxford University, UK, have said. Using the latest in computer vision and machine learning, the algorithm increasingly learns what facial features to pay attention to and what to ignore from a growing bank of photographs of people diagnosed with different syndromes.

The University researchers have come up with a computer programme that recognises facial features in photographs; looks for similarities with facial structures for various conditions, such as Down's syndrome, Angelman syndrome, or Progeria; and returns possible matches ranked by likelihood.

While genetic disorders are each individually rare, collectively these conditions are thought to affect one person in 17. Of these, a third may have symptoms that greatly reduce quality of life. However, most people fail to receive a genetic diagnosis.

'A diagnosis of a rare genetic disorder can be a very important step. It can provide parents with some certainty and help with genetic counselling on risks for other children or how likely a condition is to be passed on,' said lead researcher Dr Christoffer Nellåker of the MRC Functional Genomics Unit at the University of Oxford. 'A diagnosis can also improve estimates of how the disease might progress, or show which symptoms are caused by the genetic disorder and which are caused by other clinical issues that can be treated.'

The team of researchers at the University of Oxford included first author Quentin Ferry, a DPhil research student, and Professor Andrew Zisserman of the Department of Engineering Science, who brought expertise in computer vision and machine learning.

Zisserman said: 'It is great to see such an inventive and beneficial use of modern face representation methods.'

Identifying a suspected developmental disorder tends to require clinical geneticists to come to a conclusion based on facial features, follow up tests and their own expertise. It's thought that 30–40 per cent of rare genetic disorders involve some form of change in the face and skull, possibly because so many genes are involved in development of the face and cranium as a baby grows in the womb.

The researchers set out to teach a computer to carry out some of the same assessments objectively.

They developed a programme that recognises faces in ordinary photographs. The programme accounts for variations in lighting, image quality, background, pose, facial expression, and identity. It builds a description of the face structure by identifying corners of eyes, nose, mouth and other features, and compares this against what it has learnt from other photographs fed into the system.

The algorithm the researchers have developed sees patients sharing the same condition automatically cluster together. The computer algorithm does better at suggesting a diagnosis for a photo where it has previously seen lots of other photos of people with that syndrome, as it learns more with more data.

Patients also cluster where no documented diagnosis exists, potentially helping in identifying ultra-rare genetic disorders. 'A doctor should in future, anywhere in the world, be able to take a smartphone picture of a patient and run the computer analysis to quickly find out which genetic disorder the person might have,' said Nellåker. 'This objective approach could help narrow the possible diagnoses, make comparisons easier and allow doctors to come to a conclusion with more certainty.'

The researchers report their findings in the journal eLife. The study was funded by the Medical Research Council (MRC), the Wellcome Trust, the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) and the European Research Council (ERC VisRec).

Recent News

24 October 2019

Imec says the new production method promises an order of magnitude gain in fabrication throughput and cost compared to processing conventional infrared imagers

04 October 2019

Each pixel in Prophesee’s Metavision sensor only activates if it detects a change in the scene – an event – which means low power, latency and data processing requirements

18 September 2019

3D sensing company, Outsight, has introduced a 3D semantic camera that combines lidar ranging with hyperspectral material analysis. The camera was introduced at the Autosens conference in Brussels

16 September 2019

OmniVision Technologies will be showing an automotive camera module at the AutoSens conference in Brussels from 17 to 19 September, built using OmniVision’s OX03A1Y image sensor with an Arm Mali-C71 image signal processor