Resources

White paper
05 October 2017

Machine vision is one of the driving forces of industrial automation. For a long time, it’s been primarily pushed forward by improvements made in 2D image sensing and, for some applications, 2D sensing is still an optimal tool to solve a problem. But the majority of challenges machine vision is facing today has a 3D character. From well-established metrology up to new applications in smart robotics, 3D sensors serve as a main source of data. Here, we discuss the parameters of 3D sensing techniques.

White paper
03 October 2017

Sensors are the heart of every vision system! From industrial automation to image processing, human-machine-interaction, or self driving cars - selecting the right sensor depends very much on the application and the desired output. Six important criteria will help you to choose a specification and select the optimal image sensor for your application! Enter your details below, or click here to download the white paper for free: https://imaging.framos.com/whitepaper-sensors

White paper
03 October 2017

Imaging lenses used in many industrial machine vision applications have special requirements beyond those of standard imaging lenses. The lenses used in factory automation, robotics, and industrial inspection have to work in specific and demanding environments, which could involve vibrations, shocks, temperature changes, and contaminants. Because of these environmental requirements, new classes of ruggedized lenses are being designed specifically to work in a multitude of different scenarios, therefore creating different types of ruggedization. There are three distinct types of ruggedization available: Industrial Ruggedization, Ingress Protection Ruggedization, and Stability Ruggedization.

White paper
25 July 2017

This technical note is an intermediate level document intended
to provide guidelines to systems engineers for determining the
resolution requirements for electronic imaging systems. We’ll do
this with an emphasis on:
a) the correct goals for each application, and
b) taking the total system (imaging chain) into account.

White paper
04 July 2017

More and more, machine vision systems are expected to make dynamic, automated decisions based on variable conditions. The amount of time and effort to develop these systems can be daunting. Today, the advent of deep learning is changing this landscape and putting automation within the reach of many. Resources such as open-source libraries, Nvidia hardware, and FLIR cameras are helping to make this change happen FLIR cameras have advanced features that minimize the image pre-processing required for neural network training, work seamlessly with platforms such as NVidia Jetson TX-2 and Drive PX 2, and offer 24/7 reliability for trouble-free deployment.

Pages

Feature

Artificial intelligence seems to be sweeping the world and neural networks are now starting to find their way into the industrial imaging market. Greg Blackman investigates 

Feature

Wilhelm Stemmer, who has recently retired and sold his shares in Stemmer Imaging, the company he founded 30 years ago

Feature

Matthew Dale explores how 3D cameras are granting robots the gift of sight

Feature

Rob Ashwell finds that logistics, healthcare and research are turning to consumer imaging systems for their needs