This article is brought to you by: 

Using deep learning in machine vision

More and more, machine vision systems are expected to make dynamic, automated decisions based on variable conditions. The amount of time and effort to develop these systems can be daunting. Today, the advent of deep learning is changing this landscape and putting automation within the reach of many. Resources such as open-source libraries, Nvidia hardware, and FLIR cameras are helping to make this change happen FLIR cameras have advanced features that minimize the image pre-processing required for neural network training, work seamlessly with platforms such as NVidia Jetson TX-2 and Drive PX 2, and offer 24/7 reliability for trouble-free deployment.

Premium Access
To access this content please enter your details in the fields below. If you believe you have already done so for this, please resubmit your details here.
Already registered?
If you believe you have already registered please submit the email you originally entered.
Feature

Cognex has strengthened its position in 3D vision with a number of recent company acquisitions in the area, as Greg Blackman discovers

Feature

Barry Warzak, owner and founder, Midwest Optical Systems

Feature

Embedded processing is opening up a huge market for imaging, a market that machine vision suppliers are trying to tap into. Greg Blackman attended the Embedded Vision Summit in Santa Clara, where Allied Vision launched its new camera platform

Feature

Rob Ashwell looks at how vision fits into the battery of sensors onboard autonomous vehicles

Feature

The harvesting process could be on the verge of a complete overhaul thanks to machine vision, finds Matthew Dale

Analysis and opinion
Analysis and opinion