This article is brought to you by: 

Using deep learning in machine vision

More and more, machine vision systems are expected to make dynamic, automated decisions based on variable conditions. The amount of time and effort to develop these systems can be daunting. Today, the advent of deep learning is changing this landscape and putting automation within the reach of many. Resources such as open-source libraries, Nvidia hardware, and FLIR cameras are helping to make this change happen FLIR cameras have advanced features that minimize the image pre-processing required for neural network training, work seamlessly with platforms such as NVidia Jetson TX-2 and Drive PX 2, and offer 24/7 reliability for trouble-free deployment.

Premium Access
To access this content please enter your details in the fields below. If you believe you have already done so for this, please resubmit your details here.
Already registered?
If you believe you have already registered please submit the email you originally entered.
Feature

Greg Blackman asks what it takes to commercialise new imaging technology

Feature

Embedded vision, deep learning, and Industry 4.0 could all have a big impact on the machine vision sector in the future. Three experts give their opinions

Feature

Andrew Williams explores the production and automation markets in China, India and other fast-growing nations

Feature

Pierre Cambou, imaging activity leader at Yole Développement, analyses the merger and acquisition landscape for machine vision

Feature

Following a successful European Machine Vision Forum, which brought together representatives from industry and research, Professor Bernd Jähne at the HCI, Heidelberg University and a board member of the European Machine Vision Association, argues collaboration between industry and academia is now more important than ever